Archive for June, 2015

6620 Krohn-Hite photo

Krohn-Hite 6620 at BRL Test

BRL-TESTBRL Test is your sole source for lab standards such as the Krohn- Hite 6620.  Call today to lock in on the savings 407-682-4228 or click here for data sheets and quote forms.

The Krone-Hite 6620 provides precision phase measurements with a typical accuracy of 0.02° and a resolution of 0.01° over most of the frequency range. It will accept a wide range of input signal levels from 10mVrms to 320V rms and input waveforms including sine, triangle, square and pulses. A 5 digit LED display provides continuous direct readout of phase angles between 0.00° and 360.00° or ±180°. These two ranges can be manually or automatically selected. The 6620 employs a technique that eliminates phase reading errors usually associated with component drift called Automatic Meter Correct (AMC). AMC provides instant correction of phase readings for zero and full scale errors, making phase measurements more accurate and reliable. The Model 6620 provides a RELATIVE phase measurement mode which allows the monitoring of phase deviations without having to make unwanted calculations. Also provided are an automatic selection of input voltage range, front panel indicators to indicate a too low/high input voltage range, and an analog output for use with an external meter or strip chart recorder. Part No. RK-316 permits the installation of the Model 6620 into a standard 19″ rack spacing.spec sheet data sheet

Photo Tektronix MSO4054 at BRL Test

Tektronix MSO4054 Oscilloscope, 500 MHz, 4+16 CH, 5GS/s. Can Anyone beat BRL Test’s Price at $5,490?  If so send us your quote so we can beat it.

At BRL Test we’ve been busy buying up oscilloscopes.  This means you can save big on premium used, warrantied and certified oscilloscopes.  Take the MSO4054.  Can anyone beat BRL Test’s price?  If so send us your quote so we can beat it.

Get a great deal today and rest easy with your purchase knowing that you have the full backing of BRL Test’s world class repair department.

Get in for less money and lower your downtime risk with BRL Test.

Call 407-862-4228 or get a MSO4054 online quote when you click here.

As an embedded design engineer, you are faced with the challenge of ever increasing system complexity. A typical embedded design may incorporate various analog signals, high- and lowspeed serial digital communication and microprocessor buses, just to name a few. Serial protocols such as I2C and SPI are used frequently for chip-to-chip communication, but parallel buses are still used in many applications. Microprocessors, FPGAs, Analog-to-Digital Converters (ADCs) and Digital-to-Analog Converters (DACs) are all examples of ICs that present unique measurement challenges in today’s embedded designs. The MSO4000 Series Mixed Signal Oscilloscopes offer the addition of 16 digital channels. These channels are tightly integrated into the oscilloscope’s user interface, simplifying operation and making it possible to solve mixed signal issues more easily. Next Generation Digital Waveform Display In a continued effort to make mixed signal oscilloscopes easy to use, the MSO4000 Series has redefined the way you view digital waveforms. One common problem shared by both logic analyzers and mixed signal oscilloscopes is determining if data is a one or a zero when zoomed in far enough that the digital trace stays flat all the way across the display. The MSO4000 has color-coded the digital traces, displaying ones in green and zeros in blue. The MSO4000 has multiple transition detection hardware. When the system detects multiple transitions, the user will see a white edge on the display. White edges indicate that more information is available by zooming in or acquiring at faster sampling rates. In most cases zooming in will reveal the pulse that was not viewable at the previous settings. If the white edge is still present after zooming in as far as possible, this indicates that increasing your sample rate on the next acquisition will reveal higher frequency information than your previous settings could acquire. Channel setup on an MSO can often be time-consuming as compared to the traditional oscilloscope. This process often includes probing the device-under-test, labeling the channels and positioning the channels on screen. The MSO4000 simplifies this process by allowing the user to group digital waveforms. By simply placing digital waveforms next to each other, they form a group. Once a group is formed, you can position all the channels contained in that group together. This greatly reduces the normal setup time associated with positioning channels individually